New Privacy Preserving Back Propagation Learning for Secure Multiparty Computation

نویسندگان

  • Hirofumi Miyajima
  • Noritaka Shigei
  • Hiromi Miyajima
  • Yohtaro Miyanishi
  • Shinji Kitagami
  • Norio Shiratori
چکیده

Many studies have been done with the security of cloud computing. Data encryption is one of typical approaches. However, complex computing requirement for encrypted data needs a great deal of time and effort for the system in this case. Therefore, another studies on secure sharing and computing methods are made to avoid secure risks being abused or leaked and to reduce computing cost. The secure multiparty computation (SMC) is one of these methods. So far, some studies have been done with SMC. Specifically, SMC with secure shared data in addition and multiplication forms is proposed and applied to arithmetic operation and simple statistical computation. However, complex calculation processing such as BP(Back Propagation) learning has never proposed yet. In this paper, we propose BP learning method for SMC on cloud computing system and prove the validity of it. Further, the performance of the proposed method is shown in numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Privacy Preserving Data Mining in Secure Multiparty Computation using Hadamard Matrix

Secure multiparty computation allows multiple parties to participate in a computation. SMC (secure multiparty computation) assumes n parties where n>1. All the parties jointly compute a function. Privacy preserving data mining has become an emerging field in the secure multiparty computation. Privacy preserving data mining preserves the privacy of individual's data. Privacy preserving data mini...

متن کامل

Secure Multiparty Computation for Privacy-Preserving Data Mining

In this paper, we survey the basic paradigms and notions of secure multiparty computation and discuss their relevance to the field of privacy-preserving data mining. In addition to reviewing definitions and constructions for secure multiparty computation, we discuss the issue of efficiency and demonstrate the difficulties involved in constructing highly efficient protocols. We also present comm...

متن کامل

Efficient Secure Multiparty Computation Protocol for Sequencing Problem over Insecure Channel

As a powerful tool in solving privacy preserving cooperative problems, secure multiparty computation is more and more popular in electronic bidding, anonymous voting, and online auction. Privacy preserving sequencing problem which is an essential link is regarded as the core issue in these applications. However, due to the difficulties of solvingmultiparty privacy preserving sequencing problem,...

متن کامل

New privacy preserving clustering methods for secure multiparty computation

Many researches on privacy preserving data mining have been done. Privacy preserving data mining can be achieved in various ways by use of randomization techniques, cryptographic algorithms, anonymization methods, etc. Further, in order to increase the security of data mining, secure multiparty computation (SMC) has been introduced. Most of works in SMC are developed on applying the model of SM...

متن کامل

پروتکل کارا برای جمع چندسویه امن با قابلیت تکرار

In secure multiparty computation (SMC), a group of users jointly and securely computes a mathematical function on their private inputs, such that the privacy of their private inputs will be preserved. One of the widely used applications of SMC is the secure multiparty summation which securely computes the summation value of the users’ private inputs. In this paper, we consider a secure multipar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016